Non-universal behaviour of self-attracting walks

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1995 J. Phys. A: Math. Gen. 283851
(http://iopscience.iop.org/0305-4470/28/14/007)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.68
The article was downloaded on 01/06/2010 at 23:53

Please note that terms and conditions apply.

Non-universal behaviour of self-attracting walks

Fábio D A Aarão Reis
Departamento de Física, Universidade Federal Fluminense, Av. Litorânea s/n, Gragoatá, CEP 24210-340, Niteró, RJ, Brazil

Received 25 January 1995

Abstract

A recently proposed model for self-attracting walks is studied using exact enumeration techniques. The probability of a step is proportional to $\exp (-n u)$, where $n=1$ for sites already visited by the walker and $n=0$ for the others, with $u<0$. Series for the mean-square displacement $\left\langle R_{N}^{2}\right\rangle \sim N^{2 \nu}$ and the mean number of visited sites $\left\langle S_{N}\right\} \sim N^{s}$ of N-step walks are calculated in one to four dimensions. In all dimensions anomalous diffusion is observed, and exponents v and s vary continuously with the strength parameter u : The results are compared with simulations and with previous results for static and dynamic models of generalized random walks in one dimension. The behaviour in two and three dimensions may describe anomalous diffusion in real systems.

1. Introduction

Random walks (RW) and interacting random walks (with memory) model many physical processes. RW are applied as a model for transport phenomena [1,2] and the more intensively studied interacting walk, the self-avoiding walk (SAW), describes the properties of polymers in solution $[3,4]$. The mean-square end-to-end distance of N-step walks behaves asymptotically as

$$
\begin{equation*}
\left\langle R_{N}^{2}\right\rangle \sim \dot{N}^{2 \nu} \tag{1}
\end{equation*}
$$

For RW, $\nu=\frac{1}{2}$ in all dimensions, and for SAW $\nu>\frac{1}{2}$ for up to three dimensions. When $\nu<\frac{1}{2}$ the walk is antipersistent and is said to display anomalous diffusion. This is a characteristic of RW in fractal systems [2].

Other interacting random walks of physical interest have also been studied, such as the true self-avoiding walk (TSAW) [5, 6], the Domb-Joyce model [7] and an interacting walk of Stanley et al [8,9]. A comparative study of these models in one dimension [10] has shown that the particular form of correlation between steps is fundamental to the critical behaviour. Some of the important mechanisms are the range of the interaction, the presence of cumulative memory effects and global or local normalization conditions [10].

Unifying models of static and dynamic random walks have been proposed, including the previous models as limiting cases. Duxbury and de Queiroz [11] studied a generalized random walk in which each configuration with N steps has weight

$$
\begin{equation*}
W=\exp \left(-g \sum_{i=1}^{S}\left(n_{t}\right)^{\alpha}\right) \tag{2}
\end{equation*}
$$

where the sum spans all S visited sites and n_{i} is the number of times site i is visited. The parameter g determines the strength of the correlation between steps and the exponent α
varies from 0 to 2 (RW corresponds to $\alpha=1$). The asymptotic behaviour in one dimension depends on the exponent α. The interacting walk of Stanley et al [8] corresponds to $\alpha=0$ and, in the attracting case (all $g<0$), displays anomalous diffusion with $v=\frac{1}{3}$ [9].

The above static model has a corresponding dynamic model proposed by Ottinger [12]. In this generalized model the probability p_{i} for moving to a site i is proportional to

$$
\begin{equation*}
W_{i}=\exp \left(-g n_{i}^{\alpha}\right) \tag{3}
\end{equation*}
$$

The one-dimensional version was studied for $0<\alpha \leqslant 2$ and $g>0$, and it was shown that v depends on α but not on g [12].

Recently, Sapozhnikov [13] studied a generalized walk in which the probability for the walker to jump to a site is proportional to

$$
\begin{equation*}
p=\exp (-n u) \tag{4}
\end{equation*}
$$

where $n=1$ for the sites visited by the particle at least once and $n=0$ for the others. This model is the limit $\alpha \rightarrow 0$ of Öttinger's model. The case $u<0$ was called a self-attracting walk (SATW). Computer simulations gave $\nu<\frac{1}{2}$ for $u=-1$ and $u=-2$ in dimension $D=2$, and it was proposed that $v=\frac{1}{2}$ in $D=1$ and $\frac{1}{4}<v<\frac{1}{3}$ in $D=3$ [13].

The possibility of anomalous diffusion in two and three dimensions is interesting because there are experiments which show this property [13,14] and previous theoretical papers were limited to one-dimensional systems.

The purpose of this paper is to study SATw by exact enumeration of short walks (series expansions), obtaining estimates of the exponent ν and the exponent s defined by

$$
\begin{equation*}
\left\langle S_{N}\right\rangle \sim N^{s} \tag{5}
\end{equation*}
$$

where. $\left\{S_{N}\right\rangle$ is the mean number of sites visited by N-step walks. In section 2 we present the enumeration techniques, an example of the calculation of the probability of two walks and the techniques used for series analysis. In section 3 we present accurate results in $D=1$ for several values of the parameter u, obtained from series up to $N=30$. In section 4 we show the results for $D=2$, obtained from series for the square and the triangular lattice. The comparison of the estimates of the exponent v for these two lattices is convenient to test the extrapolation procedure. In section 5 we show the results for $D=3$ and 4 , and the paper concludes in section 6 with a summary and discussion.

2. Series generation and analysis

In order to calculate $\left\langle R_{N}^{2}\right\rangle$ (equation (1)) and $\left\langle S_{N}\right\rangle$ (equation (5)) we have to consider all walks with N steps (z^{N} walks, where z is the lattice coordination number), and the probability P_{α} of each walk α. Then

$$
\begin{equation*}
\left\langle R_{N}^{2}\right\rangle=\sum_{\alpha=1}^{z^{N}} P_{\alpha} R_{\alpha}^{2} \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\langle S_{N}\right\rangle=\sum_{\alpha=1}^{z^{N}} P_{\alpha} S_{\alpha} \tag{7}
\end{equation*}
$$

Figure 1. (a) Walk with six steps initiated at site O and ending at site A. (b) Walk whose seventh step is from A to B (site B was not visited yet). (c) Walk whose seventh step is from A to C (site C was already visited). The walk in (c) has probability e^{-4} times greater than the probability of the walk in (b). E and D are the other sites avaiable for the seventh step.
where R_{α}^{2} and S_{α} are the square end-to-end distance and the number of visited sites of walk α, respectively. The probability P_{α} is given by

$$
\begin{equation*}
P_{\alpha}=\prod_{i=1}^{N} P_{i, \alpha} \tag{8}
\end{equation*}
$$

where $P_{i, \alpha}$ is the probability of the i th step in walk α, obtained using (4). This probability is given by

$$
\begin{equation*}
P_{i, \alpha}=\frac{\exp \left(-n_{s_{l}} u\right)}{\sum_{j=1}^{z} \exp \left(-n_{j} u\right)} \tag{9}
\end{equation*}
$$

The sum in (9) is over the nearest neighbours of the i th site of walk α (the end of the walk up to the ($i-1$)th step); s_{i} is the site to where the walker jumps in the i th step of walk $\alpha ; n_{j}=1$ or 0 if the neighbouring site j has already been visited or not, respectively.

As an example, consider the walks in figure 1 . Let P be the probability of the walk up to six steps (from O to A, figure $1(a)$). As site A has two neighbours previously visited (C and D), the probability of the walk in figure $1(b)$ is $P\left(2+2 \mathrm{e}^{-u}\right)^{-1}$, and the probability of the walk in figure $1(c)$ is $P \mathrm{e}^{-u}\left(2+2 \mathrm{e}^{-u}\right)^{-1}$. The former probability also applies to a walk which jumps from A to E^{\prime} and the latter to a walk which jumps from A to D.

As we will study the case $u<0$, it is more probable that the walker jumps to the previously visited sites C and D . Both steps have the same probability because the attractive effect is not cumulative, i.e. it does not depend on the number of visits to a site. This is a characteristic of the model of Stanley et al $[8,9]$, with the difference of the lacal normalization condition of SATW, as shown in the example above.

The estimates of the exponents $v(1)$ and s (5) are obtained through the ratio method [15]. As the series for SATW are very regular for small values of u, this technique gives accurate results. More sophisticated methods, like Pade approximants, on the other hand, do not work well for those series [16].

As the series frequently present oscillations, we treat even and odd N separately, defining the ratios of successive terms

$$
\begin{equation*}
\rho_{N}=\frac{\left\langle R_{N}^{2}\right\rangle}{\left\langle R_{N-2}^{2}\right\rangle} \tag{10a}
\end{equation*}
$$

and

$$
\begin{equation*}
\mu_{N}=\frac{\left\langle S_{N}\right\rangle}{\left\langle S_{N-2}\right\rangle} \tag{10b}
\end{equation*}
$$

Initial estimates of v and s are obtained from

$$
\begin{equation*}
v_{N}=\frac{1}{4} N\left(\rho_{N}-1\right) \tag{11a}
\end{equation*}
$$

and

$$
\begin{equation*}
s_{N}=\frac{1}{2} N\left(\mu_{N}-1\right) \tag{11b}
\end{equation*}
$$

so that $v_{N} \rightarrow \nu$ and $s_{N} \rightarrow s$ for $N \rightarrow \infty$. Corrections to scaling in (1) and corrections to the approximation $\rho_{N} \approx 1+4 \nu / N$ (equations (1) and (10a)) are responsible for the differences between v_{N} and ν. Similar corrections appear when $s_{N} \rightarrow s$. The sequences $\left\{v_{N}\right\}$ and $\left\{s_{N}\right\}$ are analysed by constructing Neville tables, where they are considered as functions of $1 / N$ [15]. The first column of these tables gives the intercepts with the $1 / N=0$ axis of straight lines passing through each pair of successive points of the plot v_{N} (or s_{N}) versus $1 / N$; these estimates are

$$
\begin{equation*}
v_{N}^{(1)}=\frac{1}{2}\left(N \nu_{N}-(N-2) \nu_{N-2}\right) \tag{12a}
\end{equation*}
$$

and

$$
\begin{equation*}
s_{N}^{(1)}=\frac{1}{2}\left(N s_{N}-(N-2) s_{N-2}\right) \tag{12b}
\end{equation*}
$$

where even and odd N are considered separately, as before.
$v_{N}^{(1)}$ and $s_{N}^{(1)}$ represent the first step to reduce the corrections cited above. Their convergence can be analysed with the same techniques. Sequences $\left\{\nu_{N}^{(2)}\right\}$ and $\left\{s_{N}^{(2)}\right\}$ are obtained by extrapolating $\left\{\nu_{N}^{(1)}\right\}$ and $\left\{s_{N}^{(1)}\right\}$ with the transformations applied to $\left\{\nu_{N}\right\}$ and $\left\{s_{N}\right\}$ in (12a) and (12b). The application of these extrapolations procedures is important until the convergence is well stablished, i.e. when successive extrapolations provide similar estimates of the exponents. In general, the convergence properties of $\nu_{N}^{(1)}$ and $s_{N}^{(1)}$ will give accurate estimates of v and s.

3. SATW in one dimension

We calculated $\left\langle R_{N}^{2}\right\rangle$ and $\left\langle S_{N}\right\rangle$ up to $N=30$ for several values of the parameter u, ranging from -0.2 to -3.0 . In table 1 we present the results for $u=-1.0$, the only value for which series up to order 35 were calculated.

In figure 2 we plot $\nu_{N} \times 1 / N$ (equation ($11 a$)) for $u=-0.2$ and -1.0 and in figure 3 we plot $v_{N}^{(1)} \times 1 / N$ (equation (12a)) for the same values of u. Note that for $u=-1.0$ the plots in figures 2 and 3 seem to give different estimates of v. However, the sequence $\left\{\nu_{N}^{(1)}\right\}$ can be extrapolated according to the procedure described in section 2 and we obtain the sequence $\left\{\nu_{N}^{(2)}\right\}$, shown in figure 4 also as function of $1 / N$. The last values of $v_{N}^{(2)}$ confirm the trend to $\nu \approx 0.47$ in figure 3 .

The convergence of the plots in figure 3 indicates that $\nu<\frac{1}{2}$ in both cases, proving that even for small relative probabilities ($e^{0.2} \approx 1.22$) anomalous diffusion is found. For greater values of $|u|$, the even-odd oscillations of those plots are greater, then it is possible to estimate ν accurately (with an error less than 10%) only up to $|u|=2.0$.

In table 2 we show the final estimates of ν, obtained with the same procedure described above for $u=-1.0$. It seems that v decreases continuously when u decreases, increasing the attraction effect. This result is different of the universal behaviour ($\nu=\frac{1}{3}$) obtained

Figure 2. Plot of $\nu_{N} \times 1 / N$ (equation (11a)) for $u=-0.2(\square)$ and $u=-1.0(0)$ in one dimension.

Table 1. $\left\langle R_{N}^{2}\right\rangle$ and $\left\langle S_{N}\right\rangle$ for $u=-1.0$ in one dimension.

N	$\left\langle R_{N}^{2}\right\}$	$\left\langle S_{N}\right\rangle$
2	1.075765685479	2.268941421370
3	1.578635905028	2.537882842739
4	1.702418296093	2.753947171325
5	2.085357524949	2.970011499911
6	2.249567330012	3.150705423395
7	2.565809081498	3.333042270474
8	2.751981334734	3.489941634627
9	3.029670676011	3.649228764791
10	3.225938276476	3.789466303981
11	3.480440840353	3.932159557364
12	3.680517339792	4.060157797637
13	3.920371229655	4.190363955481
14	4.121184199112	4.308953615730
15	4.351226221383	4.429400916947
16	4.551378015262	4.540470653181
17	4.774423491206	4.653047210016
18	4.973348986452	4.757914090864
19	5.191099651610	4.863977524063
20	5.388630372734	4.963599965956
21	5.602166230659	5.064160631486
22	5.798311407887	5.159263199186
23	6.008357992179	5.255095810021
24	6.203197705039	5.346244 .336342
25	6.410272115881	5.437958122307
26	6.603907217057	5.525606389051
27	6.808398714049	5.613690670442
28	7.000928932422	5.698210465906
29	7.203144151757	5.783065250873
30	7.394659781711	5.864766454171
31	7.594848781737	5.946723634044
32	7.785428599646	6.025868116449
33	7.983800392678	6.105206565032
34	8.173512205359	6.182018294338
35	8.370244545295	6.258974993396

Figure 3. Plot of $v_{N}^{(1)} \times 1 / N$ (equation (12a)) for $u=-0.2(\square)$ and $u=-1.0(0)$ in one dimension.

Figure 4. Plot of $v_{N}^{(2)} \times 1 / N$ (see text) for $u=-1.0$ in one dimension.

Table 2. Estimates of v and s in one dimension, for several values of the strength parameter u.

u	v	s
-0.2	0.490 ± 0.005	0.496 ± 0.004
-0.5	0.48 ± 0.01	0.488 ± 0.006
-1.0	0.465 ± 0.015	0.475 ± 0.010
-1.5	0.44 ± 0.02	0.465 ± 0.015
-2.0	0.42 ± 0.03	0.445 ± 0.020

for the corresponding static model [9]. In the dynamic case, it is clear the non-universal behaviour and, at least for $|u| \leqslant 2.0$, the attraction effect is weaker (all $\nu>\frac{1}{3}$ in table 2). As we cannot obtain accurate estimates for $|u|>2.0$, it is not possible to decide whether v crosses the value $\frac{1}{3}$ or converges to it for $u \rightarrow-\infty$. We will return to this point in section 6.

In figure 5 we plot $s_{N}^{(1)} \times 1 / N$ (equation (12b)) for $u=-0.5$ and $u=-1.5$. We

Figure 5. Plot of $s_{N}^{(1)} \times 1 / N$ (equation (12b)) for $u=-0.5(\square)$ and $u=-1.5(0)$ in one dimension.
also see that $s<\frac{1}{2}$ even for small values of u ($s=\frac{1}{2}$ for RW [1]). On the other hand, the even-odd oscillations of $s_{N}^{(1)}$ do not increase quickly with $|u|$ as in the plots of $v_{N}^{(1)}$, so that we are able to obtain estimates of s up to $u=-3.0$. The final estimates of s for the values of u in which we found estimates of ν are also shown in table 2 .

It is expected that $v=s$ in one dimension $[9,10]$. Our results for SATW do not discard this possibility (see table 2) but all the centres of the error bars indicate $v<s$. It means that the number of visited sites grows faster than the end-to-end distance. This is not completely surprising because slightly different behaviours of $\left\langle R_{N}^{2}\right\rangle$ and $\left\langle S_{N}\right\rangle$ were already noted, for instance in the one-dimensional Domb-Joyce model in the attractive regime [10]: although $v=s=0,\left\langle S_{N}\right\rangle$ saturates and $\left\langle R_{N}^{2}\right\rangle$ collapses.

Our results disagree with the proposal of Sapozhnikov that $v=\frac{1}{2}$ for all u in one dimension [13]. His arguments are based on the hypothesis that the walker can be localized at any visited site with equal probability when $N \rightarrow \infty$. However, this is a property of RW and not necessarily of SATW. In fact, our numerical results show that these arguments fail for SATW.

4. SATW in two dimensions

We calculated $\left\langle R_{N}^{2}\right\rangle$ and $\left\langle S_{N}\right\rangle$ up to $N=18$ for the same values of u of the one-dimensional case in the square lattice. We performed the same calculations in the triangular lattice up to $N=14$.

In table 3 we show the results for $u=-1.0$. In figure 6 we plot $\nu_{N} \times 1 / N$ (equation (11a)) for $u=-0.5$ and -1.0 in both lattices. For the greatest odd values of N the results are almost identical (the even-odd oscillations are characteristic of loosepacked lattices, such as the square lattice). It seems that the estimates converge to the same v, which is an expected universal behaviour.

In table 4 we show the final estimates of ν, using the square lattice data and the same extapolation procedures applied to the one-dimensional case. It is possible to obtain accurate estimates only up to $u=-2.5$.

Figure 6. Plot of $v_{N} \times 1 / N$ (equation (11a)) for $u=-0.5$ and $u=-1.0$ in the square (\square) and the triangular (Δ) lattices. The empty polygons correspond to $u=-0.5$ and the full ones to $u=-1.0$.

Table 3. $\left\langle R_{N}^{2}\right\}$ and $\left\{S_{N}\right\}$ for $u=-1.0$ in the square and the triangular lattices.

N	$\left\langle R_{N}^{2}\right\rangle_{s q}$	$\left\langle S_{N}\right\rangle_{s q}$	$\left\langle R_{N}^{2}\right\rangle_{t r}$	$\left\langle S_{N}\right\rangle_{t r}$
2	1.399021636216	2.524633113581	1.554750171955	2.647812571648
3	1.978630769301	3.049266227162	2.124761322697	3.237599416485
4	2.348917622092	3.494492334085	2.606175078874	3.760838777819
5	2.824927196295	3.938454572075	3.077419603973	4.253189963116
6	3.180776420424	4.336691109141	3.515031981260	4.714312265268
7	3.602504197147	4.735080374590	3.940600196302	5.155745856066
8	3.945851968515	5.102548790700	4.348573891303	5.578517785186
9	4.334019253009	5.470783830243	4.746447661788	5.987377949360
10	4.666304961349	5.816252479833	5.133074800632	6.383431559116
11	5.031448866637	6.162668024753	5.511571457832	6.769006177735
12	5.354122412350	6.491384971853	5.881958059743	7.145018594754
13	5.702288193019	6.821066307471	6.245741349963	7.512778701454
14	6.016639365097	7.136449095154	6.603227003011	7.872998747258
15	6.351612912105	7.452756727145		
16	6.658720495811	7.757175840949		
17	6.983036971627	8.062461937377		
18	7.283785190542	8.357641548941		

Table 4. Estimates of v in two dimensions for several values of the strength parameter u.

u	v
-0.2	0.485 ± 0.005
-0.5	0.46 ± 0.01
-1.0	0.40 ± 0.01
-1.5	0.34 ± 0.01
-2.0	0.29 ± 0.01
-2.5	0.26 ± 0.03

We observe a decreasing of ν, faster than in one dimension, when u decreases. This result is also different from the behaviour of the static model of Stanley et al, where the mean-square displacement $\left\langle R_{N}^{2}\right\rangle$ saturates in two and three dimensions [8].

Figure 7. Plot of $s_{N}^{(1)} \times 1 / N$ (equation (12b)) for $u=-0.5$ and $u=-1.0$ in the square ([]) and the triangular (Δ) lattices. The empty polygons correspond to $u=-0.5$ and the full ones to $u=-1.0$.

In figure 7 we plot $s_{N}^{(1)} \times 1 / N$ (equation (12b)) for $u=-0.5$ and -1.0 , in the square and the triangular lattice. For RW it is expected that [1]

$$
\begin{equation*}
\left\langle S_{N}\right\rangle \sim N / \log (N) \quad N \rightarrow \infty \tag{13}
\end{equation*}
$$

then the differences in figure 7 may appear due to non-algebraic corrections in the asymptotic form of $\left\langle S_{N}\right\rangle$. When we substitute $\left\langle S_{N}\right\rangle$ for $\left\langle S_{N}\right\rangle \log N$ in μ_{N} (equation (10b)), the plots of $s_{N}^{(1)} \times 1 / N$ for those lattices also have differences in all orders N. So the non-algebraic corrections must be more complicated than the one of RW, and suitable techniques of series analysis would be necessary to find the correct asymptotic form. As the exponent ν depends on the parameter u, these corrections may also depend on it.

Sapozhnikov [13] found $v=0.38$ for $u=-1.0$ and $v=0.32$ for $u=-2.0$ in his simulations. These results are good when compared to ours. For $u=-0.5$ he obtained $v=0.49$ and proposed that there is a critical value u_{c} so that $v=\frac{1}{2}$ for $0<u<u_{c}$. However, our data indicate a continuous variation of v even for small u, so that proposal is discarded.

5. SATW in three and four dimensions

The series for the simple cubic lattice were calculated up to $N=14$, for u ranging from -0.2 to -1.5 . As the series are short and the oscillations increase with $|u|$, it is not possible to obtain accurate estimates of the exponents for higher values of that parameter.

We plot $v_{N}^{(1)} \times 1 / N$ for $u=-1.0$ in figure 8. It is clear that SATW displays anomalous diffusion in this lattice. This result in three dimensions is interesting for a comparison with data from real systems. In table 5 we show the final estimates of v in three dimensions. It decreases with u as before, but not as quickly as in two dimensions.

The proposal of Sapozhnikov [13] that $\frac{1}{4}<\nu<\frac{1}{3}$ in three dimensions is discarded by our results, and they are very distant of the saturation effect in the corresponding static model [8].

Table 5. Estimates of v and s in three dimensions for several values of the strength parameter u.

u	v	s
-0.2	0.50 ± 0.01	0.945 ± 0.010
-0.5	0.485 ± 0.015	0.93 ± 0.02
-1.0	0.45 ± 0.02	0.88 ± 0.02
-1.5	0.39 ± 0.02	0.825 ± 0.025

Figure 8. Plot of $v_{N}^{(1)} \times 1 / N$ (equation (12a)) for $u=-1.0$ in the simple cubic lattice.

Figure 9. Plot of $v_{N}^{(1)} \times 1 / N$ (equation (12a)) for $u=-1.5$ in the four-dimensional hypercubic lattice.

We also show in table 5 the final estimates for exponent s (equation (5)). For RW, $s=1$ in three or more dimensions [1], and for SATW s seems to decrease continuously when u decreases.

In four dimensions, anomalous diffusion for SATW is also observed. We calculated series up to $N=12$ in a hypercubic lattice for $u=-0.5,-1.0$ and -1.5 , and for the last value we estimate $\nu=0.44 \pm 0.02$ (see the plot of $v_{N}^{(1)} \times 1 / N$ in figure 9), which certainly means that $v<\frac{1}{2}$.

It is also observed that $s<1$ in four dimensions. For $u=-1.5$, we estimate $s=0.895 \pm 0.025$.

When the dimension is increased from 2 to 4 , the decreasing of v and s with the parameter u is slower. For the model of Stanley et al a saturation of $\left\langle R_{N}^{2}\right\rangle$ is observed in $D \geqslant 2$, but the very opposite occurs with SATw. It seems that we are moving towards the upper critical dimension D_{c} of SATW, where we expect $\nu=\frac{1}{2}$ and $s=1$ for all u (the RW values). Our results show that $D_{c}>4$, but we are not able to decide whether D_{c} is finite or not.

6. Summary and discussion

SATW was studied in dimensions from one to four using exact enumeration techniques. Approximations of exponents ν (equation (1)) and s (equation (5)) were found for several values of the parameter $u(<0)$, with $|u|$ measuring the strength of attraction.

In all dimensions it displays anomalous diffusion and the exponents decrease continuously with u. This non-universal behaviour is very important when SATW is compared with previously studied models of generalized random walks, static [11] or dynamic [12]. For those systems, non-universal exponents were found by changing the power α according to which different visits to a site were weighted (equation (2)), but not by changing the strength parameter. Furthermore, most of those results were limited to one dimension, while SATW keeps its interesting properties in a large range of spacial dimensions. Then the estimates presented here for two and especially for three dimensions may be useful from an experimental point of view.

It was already pointed out that, in the energy-entropy balance of interacting random walk models, the local normalization condition favours the entropic term, while global normalization favours the energetic term [10]. We found exponents v for SATW (tables 2, 4 and 5) in all dimensions greater than the exponents v of the corresponding static model [8] ($\nu=\frac{1}{3}$ in $D=1, \nu=0$ in $D \geqslant 2$). This is the expected behaviour since the entropic term favours $v \rightarrow \frac{1}{2}$ (RW) and the energetic term, in case of attraction, favours $v \rightarrow 0$ (collapse). According to this analysis and the results of section 3 , in one dimension we expect $\nu \rightarrow \frac{1}{3}$ for SATW when $|u| \rightarrow \infty$. In $2 \leqslant D \leqslant D_{c}$ we expect $v \rightarrow 0$ for $|u| \rightarrow \infty$.

New perspectives are opened by our results. More accurate estimates of exponents v and s, obtained from longer series or from simulations, may describe the influence of the parameter u quantitatively, bringing new informations about the universality classes of SATW. If this work is done in dimensions greater than four, it could help to find the upper critial dimension. Finally, the results presented here motivate the proposal and study of different generalized random walk models that may display interesting features and represent the behaviour of real systems. Work along these lines is in progress.

References

[1] Montroll E W and West B J 1979 On an enriched collection of stochastic processes Fluctuation Phenomena ed E W Montroll and J L Lebowitz (Amsterdam: North-Holland)
[2] Havlin S and Avraham B 1987 Adv. Phys, 36695
[3] de Gennes P G 1979 Scaling Concepts of Polymer Physics (Ithaca, NY: Cornell University Press)
[4] Flory P J 1971 Principles of Polymer Chemistry (Ithaca, NY: Cornell University Press)
[5] Amit D J, Parisi G and Peliti L 1983 Phys. Rev. B 271635
[6] Stella A L, de Queiroz S L A, Duxbury P M and Stinchcombe R B 1984 J. Phys. A: Math. Gen. 171903
[7] Domb C and Joyce G S 1972 J. Phys. C: Solid State Phys. 5956
[8] Stanley H E, Kang K, Redner S and Blumberg R L 1983 Phys. Rev. Lett. 511223
[9] Redner S and Kang K 1983 Phys. Rev, Lett, 511729
[10] Duxbury P M, de Queiroz S L A and Stinchcombe R B 1984 J. Phys. A: Math. Gen. 172113
[11] Duxbury P M and de Queiroz S L A 1985 J. Phys. A: Math. Gen. 18661
[12] Öttinger H C 1985 J. Phys. A. Math. Gen. 18 L363
[13] Sapozhnikov V B 1994 J. Phys. A. Math. Gen. 27 L151
[14] Krug J 1989 J. Phys. A: Math. Gen. 22 L769 and references therein
[15] Gaunt D S and Guttmann A J 1974 Phase Transitions and Critical Phenomena vol 3 ed C Domb and M S Green (London: Academic)
[16] Baker G A Jr and Morris G 1981 Encyclopedia of Mathematics and its Applications vol 13 (Cambridge: Cambridge University); see also comments in F D A Aaráo Reis and R Riera 1994 Physica 208A 322

