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Non-universal behaviour of self-attracting walks 
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24210-340, Niter6i. RI, Brazil 

Received 25 Januw 1995 

Abstract A recently proposed model for self-amacting w& is studied using exact enumeration 
techniques. The probability of a step is proportional to exp(-nu), where n = 1 for sites already 
visited by the walker and n = 0 for the others, with U < 0. Series for the mean-square 
displacement (R;) - N2" and the mean number of visited sites (SN) - N' of N-step walks are 
calculated in one to four dimensions. In all dimensions anomalous diffusion is observed, and 
exponents Y and s vary continuously with the strength parameter U; The results are mmpared 
with simulations and with previous results for static and dynamic models ofgeneralized m d o m  
walks in one dimension. The behaviour in two and three dimensions may describe anomalous 
diffusion in real systems. 

1. Introduction 

Random walks (Rw) and interacting random walks (with memory) model many physical 
processes. RW are applied as a model for transport phenomena [1,2] and the more 
intensively studied interacting walk, the self-avoiding walk (SAW), describes the properties of 
polymers-in solution [3,4]. The mean-square end-to-end distance of N-step walks behaves 
asymptotically as 

{Ri) - N Z U .  (1) 

For Rw, U = f in all dimensions, and for SAW U > f for up to three dimensions. When 
U < 3 the walk is antipersistent and is said to display anomalous diffusion. This is a 
characteristic of RW in fractal systems 1'21. 

Other interacting random walks of physical interest have also been studied, such as the 
true self-avoiding walk (TSAW) [5,6], the Domb-Joyce model [7] and an interacting walk 
of Stanley er al [8,9]. A comparative study of these models in one dimension [IO] has 
shown that the particular form of correlation between steps is fundamental to the critical 
behaviour. Some of the important mechanisms are the range of the interaction, the presence 
of cumulative memory effects and global or local normalization conditions [IO]. 

Unifying models of static and dynamic random walks have been proposed, including 
the previous models as limiting cases. Duxbury and de Queiroz [ 111 studied a generalized 
random walk in which each configuration with N steps has weight 

where the sum spans all S visited sites and n; is the number of times site i is visited. The 
parameter g determines the strength of the correlation between steps and the exponent (Y 
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varies from 0 to 2 (RW corresponds to 01 = 1). The asymptotic behaviour in one dimension 
depends on the exponent 01. The interacting walk of Stanley er al [SI corresponds to 01 = 0 
and, in the amacting case (all g < O), displays anomalous diffusion with U =,f 191. 

The above static model has a corresponding dynamic model proposed by Ottinger [12]. 
In this generalized model the probability pi for moving to a site i is proportional to 

Wi = exp(-gny). (3) 

The one-dimensional version was studied for 0 < 01 < 2 and g > 0, and it was shown that 
v depends on 01 but not on g [12]. 

Recently, Sapozhnikov [I31 studied a generalized walk in which the probability for the 
walker to jump to a site is proportional to 

p = exp(-nu) (4) 

where n = 1 for the sites visited by the particle at least once and n = 0 for the others. This 
model is the l i t  01 -+ 0 of 6ttinger’s model. The case U < 0 was called a self-attracting 
walk (SAW). Computer simulations gave U < 4 for U = -1 and U = -2 in dimension 
D = 2, and it was proposed that U = 

The possibility of anomalous diffusion in two and three dimensions is interesting because 
there are experiments which show this property [13,14] and previous theoretical papers were 
limited to one-dimensional systems. 

The purpose of this paper is to study S A W  by exact enumeration of short walks (series 
expansions), obtaining estimates of the exponent U and the exponents defined by 

in D = 1 and $ < U < f in D = 3 [13]. 

(SN) - N’ (5 )  

where.(&) is the mean number of sites visited by N-step walks. In section 2 we present the 
enumeration techniques, an example of the calculation of the probability of two walks and 
the techniques used for series analysis. In section 3 we present accurate results in D = 1 
for several values of the parameter U, obtained from series up to N = 30. In section 4 we 
show the results for D = 2, obtained from series for the square and the triangular lattice. 
The comparison of the estimates of the exponent v for these two lattices is convenient to 
test the extrapolation procedure. In section 5 we show the results for D = 3 and 4, and the 
paper concludes in section 6 with a summary and discussion. 

2. Series generation and analysis 

In order to calculate ( R i )  (equation (1)) and (3,) (equation (5)) we have to consider 
all walks with N steps (zN walks, where z is the lattice coordination number), and the 
probability Pa of each walk 01. Then 
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Figure 1. (a) Walk with six steps initiated at site 0 and ending at site A. (b) Walk whore 
seventh step is f" A to B [site B w s  nor visited yet). [c) W U  whwe seventh step is from 
A to C (site C was already visited). The walk in ( e )  has probability e-" times greater than the 
probability of~the walk in [b). E and D are the other sites avaiable for the seventh step. 

where R: and S, are the square end-to-end distance and the number of visited sites of walk 
a,  respectively. The probability P. is given by 

N 

pa = n pi., (8) 
;=I 

where Pi,* is the probability of the ith step in walk a, obtained using (4). This probability 
is given by 

The s u m  in (9) is over the n-st neighbours of the ith site of walk a (the end of the 
walk up to the (i - 1)th step); si is the site to where the walker.jumps in the ith step of 
walk a; nr = 1 or 0 if the neighbouring site j bas already been visited or not, respectively. 

As an example, codsider the walks in figure 1. Let P be the probability of the walk up 
to six steps (from 0 to A, figure I(a)). As site A has two neighbours previously visited (C 
and D), the probability of the walk in figure l(b) is P ( 2  + and the probability of 
the walk in figure I(c) is Pe-"(2 + 2e")-'. The former probability also applies to a walk 
which jumps from A to E'and the latter to a walk which jumps from A to D. 

As we will study the case U c 0, it is more probable that the walker jumps to the 
previously visited sites C and D. Both steps have the same probability because the attractive 
effect is not cumulative, i.e. it does not depend on the number of visits to a site. This 
is a characteristic of the model of Stanley er al 18.91, with the difference of the local 
normalization condition of S A W ,  as shown in the example above. 

The estimates of the exponents v (1) and s (5) are obtained through the ratio method 
[IS]. As the series for SAW are very regular for small values of U ,  this technique gives 
accurate results. More sophisticated methods, like Pad6 approximants, on the other hand, 
do not work well for those series [16]. 

As the series frequently present oscillations, we treat even and odd N separately, defining 
the ratios of successive terms 

and 
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Initial estimates of U and s are obtained from 

and 

so that VN + U and SN --f s for N + CO. Corrections to scaling in (1) and corrections to the 
approximation PN x 1 +4u/N (equations (1) and (loa)) are responsible for the differences 
between UN and U. Similar corrections appear when SN + s. The sequences { U N )  and 
{ S N }  are analysed by constructing Neville tables, where they are considered as functions of 
1/N [E]. The first column of these tables gives the intercepts with the 1/N = 0 axis of 
straight lines passing through each pair of successive points of the plot VN (or s ~ )  uersus 
1/N, these estimates are 

U;) = $(NUN - (N - 2 ) V N - z )  ( W  

and 

S,$) = $ ( N S N  - (N - 2 ) S ~ - 2 )  (12b) 

where even and odd N are considered separately, as before. 
Their 

convergence can be analysed with the same techniques. Sequences { u t ) )  and [ s t ) }  are 
obtained by extrapolating {U!)} and {s!)] with the transformations applied to { U N )  and { S N )  
in (12a) and (12b). The application of these extrapolations procedures is important until the 
convergence is well stablished. i.e. when successive extrapolations provide similar estimates 
of the exponents. In general, the convergence properties of U!) and s,$) will give accurate 
estimates of U and s. 

v$)  and s$) represent the first step to reduce the corrections cited above. 

3. SATW in one dimension 

We calculated (Ri) and ( S N )  up to N = 30 for several values of the parameter U, ranging 
from -0.2 to -3.0. In table 1 we present the results for U = -1.0. the only value for 
which series up to order 35 were calculated. 

In figure 2 we plot UN x 1/N (equation (Ila)) for U = -0.2 and -1.0 and in figure 3 
we plot U!) x 1/N (equation (12 ) )  for the same values of U. Note that for U = -1.0 the 
plots in figures 2 and 3 seem to give different estimates of U. However, the sequence [U;)} 
can be extra olated according to the procedure described in section 2 and we obtain the 
sequence {U, ), shown in figure 4 also as function of 1/N. The last values of U:) confirm 
the trend to U X 0.47 in figure 3. 

The convergence of the plots in figure 3 indicates that U c & in both cases, proving 
that even for small relative probabilities (eo.’ % 1.22) anomalous diffusion is found. For 
greater values of IuI, the even-odd oscillations of those plots are greater, then it is possible 
to estimate U accurately (with an error less than 10%) only up to [uI = 2.0. 

In table 2 we show the final estimates of v ,  obtained with the same procedure described 
above for U = -1.0. It seems that U decreases continuously when U decreases, increasing 
the attraction effect. This result is different of the universal behaviour (U = f )  obtained 

$1 
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Figure 2. Plot of UN x 1/N (equation (110)) for U = -0.2 (0) and U = -1.0 (0) in one 
dimension. 

Table 1. (R;) and (SN) for Y = -1.0 in one dimension. 

2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 

N (RL) ( S N )  

1.075765685479 2.268941421 370 
1.578635905028 
1.702418296093 
2.085357524949 
2.2129567330012 
2.565809081498 
2.751 981 334734 
3.029 670676011 
3.225 938276476 
3.480440840353 
3.680517 339792 
3.920371 229655 
4.121 184199 112 
4.351 226221 383 
4.551 378015262 
4.774423 491 206 
4.973 348986452 
5.191 099651 610 
5.388630372734 
5.602 166230659 
5.798311407887 
6.008357992 179 
6.203 197705039 
6.410272 115 881 
6.603 907217 057 
6.808 398714049 
7.000928 932422 
7.203 144 151 757 
7.394 659781 711 
7.594 848 781 737 
7.785428599646 
7.983 800 392678 
8.173 512205359 

2.537882842739 
2.753 947 171 325 
2.970 011 499911 
3.150 705423395 
3.333042270474 
3.489941 634627 
3.649 228 764791 
3.789 466 303 981 
3.932 159557364 
4.060 157797637 
4.190 363 955481 
4.308 953615 730 
4.429 400 9 16 947 
4.540470653 181 
4.653 047210016 
4.757 914 090 864 
4.863 977524063 
4.963 599 965 956 
5.064 160631486 
5.159263 199 186 
5.255 095 810021 
5.346 244336 342 
5.437958 122307 
5.525606 389 051 
5.613690670442 
5.698210465 906 
5.783065250873 
5.864766454 171 
5.946723634044 
6.025868 116449 
6.105 206565032 
6.1 82 01 8 294338 

35 8.370244545295 6.258974993396 
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Figure 3. Plot of v i )  x 1 f N  (equation (121)) for U = -0.2 (0) and U = -1.0 (0) in one 
dimension. 

‘1 OA9 
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Figure 4. Plot of u p  x 1/N (see text) for Y = -1.0 in one dimension. 

Table 2. Estimates of Y and P in one dimension. for several values of the strength parameter U. 

1 1 

-0.2 0.490 f 0.005 0.496 f 0.004 
-0.5 0.48 f 0.01 0.488 f 0,006 
-1.0 0.465 i 0.015 0.475 f 0.010 
-1.5 0.44 f 0.02 0.465 f 0.015 
-2.0 0.42 f 0.03 0.445 & 0.020 

for the corresponding static model [9].~ In the dynamic case, it is clear the non-universal 
behaviour and, at least for IuI < 2.0, the attraction effect is weaker (all U > 4 in table 2). 
As we cannot obtain accurate estimates for Iu[ 2.0, it is not possible to decide whether 
v crosses the value 3 or converges to it for U + --CO. We will return to this point in 
section 6. 

In figure 5 we plot s i )  x 1/N (equation (126)) for U = -0.5 and U = -1.5. We 
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Figure 5. Plot of s,!? x 1/N (equation (1%)) for Y = -03 (0) and U = -1.5 (0) in one 
dimension. 

also see that s < for 'RW [I]). On the other hand, the 
even-dd oscillations of s i '  do not increase quickly with IuI as in the plots of v i ' ,  so that 
we are able to obtain estimates of s up to U = -3.0. The final estimates of s for the values 
of U in which we found estimates of U are also shown in table 2; 

It is expected that U = s in one dimension 19, lo]. Our results for SATW do not discard 
this possibility (see table 2) but all the centres of the error bars indicate v < s. It means that 
the number of visited sites grows faster than the end-to-end distance. This is not completely 
surprising because slightly different behaviours of ' ( R i )  and {SN) were already noted, for 
instance in the one-dimensional DombJoyce model in the attractive regime [lo]: although 
v = s = 0, {SN) saturates and (Ri) collapses. 

Our results disagree with the proposal of Sapozhnikov that v = f for all U in one 
dimension [13]. His arguments are based on the hypothesis that the walker can he localized 
at any visited site with equal probability when N + CO. However, this is a property of Rw 
and not necessarily of SATW. In fact, our numerical results show that these arguments fail 

even for s d l  values of U (s = 

for SATW. 

4. SATW in two dimensions 

We calculated ( R i )  and (SN) up to N = 18 for the same values of U of the one-dimensional 
case in the square lattice. We performed the same calculations in the triangular lattice up 
to N = 14. 

In table 3 we show the results for U = -1.0. In figure 6 we plot UN x 1/N 
(equation ( l la))  for U = -0.5 and -1.0 in both lattices. For the'greatest odd values 
of,N the results are almost identical (the even-dd oscillations are characteristic of loose- 
packed lattices, such as the square lattice). It seems that the estimates converge to the same 
v,  which is an expected universal behaviour. 

In table 4 we show the final estimates of U, using the square lattice data and the same 
extapolation procedures applied to the one-dimensional case. It is possible to obtain accurate 
estimates only up to U = -2.5. 
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Figure 6. Plot of WN x 1/N (equation (Iln)) for U = -0.5 and U = -1.0 in the square (0) 
and the triangular (A) lattices. The empty polygons correspond to U = -0.5 and the full ones 
to U = -1.0. 

Table 3. (4) and (SN) for U = -1.0 in the square and the triangular lattices. 

. .. 
2 1.399021636216 2.524633 113581 1.554750171955 2.647812571648 

8 
9 

10 
11 
12 
13 

1.978 630769 301 
2.348 917622092 
2.824927 196295 
3.180716420424 
3.602504 197 147 
3.945851968515 
4.334019253 009 
4,666304961 349 
5.031 448866637 
5.354 122412350 
5.702288 193019 

3.049 266227 162 
3.494492 334 085 
3.938454572075 
4.336691 109141 
4.735 080374590 
5.102 548790700 
5 470783 830243 
5.816252479 833 
6.162 668 024753 

6.821 066307471 
6.4913~~971a53 

2.124161 322691 
2.606 175078 874 
3.077419603 973 
3.515031 981 260 
3.940600 196302 
4.348 573 891 303 
4.746447661 788 
5.133074800632 
5.51 I571 457832 
5.881 958 059743 
6.245741 349963 

3.231 599416485 
3.760838 777819 
4 253 189963 116 
4.714312265 268 
5.155745 856066 
5 578517185 186 
5.987377949360 
6.383431 559 116 
6 769006 177735 
7.145018 594754 
7,512778 701 454 

14 6.016639365097 7.136449095 154 6.603227003011 7.872998147258 
15 6.351612912lOS 1.452756727145 
16 6.658720495811 7.757 175 840949 

18 7.283785 190542 8357641548941 
17 6.983036971627 8.0624619373n 

- ~~ ~~~~ 

Table 4. Estimates of v in two dimensions for several values of the strength parameter U .  

U ” 
-0.2 0.485 f 0.005 
-0.5 0.46&0.01 
-1.0 0.40&0.01 
-1.5 0.34f0.01 
-2.0 0.29 f 0.01 
-2.5 0.26f 0.03 

We ObServe a decreasing of U, faster than in one dimension, when U decreases. This 
result is also different from the behaviour of the static model of Stanley er al, where the 
mean-square displacement ( R i )  saturates in two and three dimensions [SI. 
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085 

Figure 7. Plot of s i '  x 1 / N  (equation (126)) for Y = -0.5 and U = -1.0 in the square (0) 
and the triangular (A) lattices. The empty polygons correspond to U = -0.5 and the full ones 
to U = -1.0. 

In figure 7 we plots$) x 1 / N  (equation (1%)) for U = -0.5 and -1.0, in the square 
and the triangular lattice. For Rw it is expected that [I] 

( S N )  - N /  IogO" N + ( 1 3 )  

then the differences in figure 7 may appear due to non-algebraic corrections in the asymptotic 
form of (SN). When we substitute ( S N )  for (&)log N in p~ (equation (lob)), the plots 
of @ x 1," for those lattices also have differences in all orders N .  So the non-algebraic 
corrections must be more complicated than the one of RW, and suitable techniques of series 
analysis would be necessary to find the correct asymptotic form. As the exponent w depends 
on the parameter U, these corrections may also depend on it. 

Sapozhnikov [13] found w = 0.38 for U = -1.0 and w = 0.32 for U = -2.0 in his 
simulations. These results are good when compared to ours. For U = -0.5 he obtained 
w = 0.49 and proposed that there is a critical value U, so that U = f for 0 < U < U , .  

However, our data indicate a continuous variation of w even for small U, so that proposal 
is discarded. 

5. S A W  in three and four dimensions 

The series for the simple cubic lattice were calculated up to N = 14, for U ranging from 
-0.2 to -1.5. As the series are short and the oscillations'increase with IuI, it is not possible 
to obtain accurate estimates of the exponents for higher values of that parameter. 

We plot v i )  x 1 / N  for U = -1.0 in figure 8. It is clear that SAW displays anomalous 
diffusion in this lattice. This result in three dimensions is interesting for a comparison with 
data from real systems. In table 5 we show the final estimates of v in three dimensions. It 
decreases with U as before, but not as quickly as in two dimensions. 

The proposal of Sapozhnikov [13] that 4 c w < f in three dimensions is discarded 
by our results, and they are very distant of the saturation effect in the corresponding static 
model 181. 
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Table 5. Estimates of U and s in h t e  dimensions for several values of the strength parameter U. 

Y U s 

-0.2 0.50 * 0.01 0.945 * 0.010 
-0.5 0.485 rt 0.015 0.93 * 0.02 
-1.0 ~ 0.45 10.02 0.88* 0.02 
-1.5 0.39 * 0.02 0.825 z t  0.025 

0.50 , 

V p  a " 5 1 , ,  m , ,  ~, ~, , 

0.40 

"50.00 0.05 0.10 0.15 
1 8  

0 

Figure 8. Plot of up) x 1 IN (equation (1Za)) for Y = -1.0 in the simple cubic lanice. 

Figure 9. Plot of U:) x 1/N (equation (1Za)) for U = -1.5 in the four-dimensional hypercubic 
lattice. 

We also show in table 5 the final estimates for exponents (equation (5)). For RW, s = 1 
in three or more dimensions [l], and for S A W  s seems to decrease continuously when U 
decreases. , 

In four dimensions, anomalous diffusion for S A W  is also observed. We calculated series 
up to N = 12 in a hypercubic lattice for U = -0.5, -1.0 and -1.5, and for the last value 
we estimate U = 0.44 f0.02 (see the plot of U!' x 1/N in figure 9), which certainly means 
that U c 4. 
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It is also observed that s < 1 in four dimensions. For U = -1.5, we estimate 
s = 0.895 2z 0.025. 

When the dimension is increased from 2 to 4, the decreasing of U and s with the 
parameter U is slower. For the model of Stanley ef al a saturation of ( R ; )  is observed in 
D > 2, but the very opposite occurs with S A W .  It seems that we are moving towards the 
upper critical dimension D, of SAW, where we expect U = f and s = 1 for all U (the RW 
values). Our results show that Dc z 4, but we are not able to decide whether D, is finite 
or not. 

6. Summary and discussion 

S A W  was studied in dimensions from one to four using exact enumeration techniques. 
Approximations of exponents w (equation (1)) and s (equation (5) )  were found for several 
values of the parameter U (e O), with IuI measuring the strength of attraction. 

In all dimensions it displays anomalous diffusion and the exponents decrease 
continuously with U .  This non-universal behaviour is very important when SAW is compared 
with previously studied models of generalized random walks, static [ l l ]  or dynamic [12]. 
For those systems, non-universal exponents were found by changing the power CY according 
to which different visits to a site were weighted (equation (2)), but not by changing the 
strength parameter. Furthermore. most of those results were limited to one dimension, 
while SATW keeps its interesting properties in a large range of spacial dimensions. Then the 

 estimates presented here for two and especially for three dimensions may be useful from 
an experimental point of view. 

It was already pointed out that, in the energy-entropy balance of interacting random 
walk models, the local normalization condition favours the entropic term, while global 
normalization favours the energetic term [lo]. We found exponents U for S A W  (tables 2, 4 
and 5 )  in all dimensions greater than the exponents v of the corresponding static model [SI 
( v  = f in D = 1, v = 0 in D 2). This is the expected behaviour since the entropic term 
favours v -+ $ (RW) and the energetic term, in case of attraction, favours U -+ 0 (collapse). 
According to this analysis and the results of section 3, in one dimension we expect U + f 
for SATW when IuI + 00. In 2 6 D < DE we expect v --f 0 for IuI + 00. 

New perspectives are opened by our results. More accurate estimates of exponents w 
and s, obtained from longer series or from simulations, may describe the influence of the 
parameter U quantitatively, bringing new informations about the universality classes of SAW. 
If this work is done in dimensions greater than four, it could help to find the upper critial 
dimension. Finally, the results presented here motivate the proposal and study of different 
generalized random walk models that may display interesting features and represent the 
behaviour of real systems. Work along these lines is in progress. 
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